Recurrent Online Clustering as a Spatio-Temporal Feature Extractor in DeSTIN

نویسندگان

  • Steven R. Young
  • Itamar Arel
چکیده

This paper presents a basic enhancement to the DeSTIN deep learning architecture by replacing the explicitly calculated transition tables that are used to capture temporal features with a simpler, more scalable mechanism. This mechanism uses feedback of state information to cluster over a space comprised of both the spatial input and the current state. The resulting architecture achieves state-of-the-art results on the MNIST classification benchmark.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Temporal Dynamics with Function Approximation in Deep Spatio-Temporal Inference Network

Biologically inspired deep machine learning is an emerging framework for dealing with complex high-dimensional data. An unsupervised feature extraction deep learning architecture called Deep Spatio-Temporal Inference Network (DeSTIN) utilizes a hierarchy of computational nodes, where each node features a common algorithm for inference of temporal patterns. The nodes all are geared to online lea...

متن کامل

Anomaly Detection on Graph Time Series

In this paper, we use variational recurrent neural network to investigate the anomaly detection problem on graph time series. The temporal correlation is modeled by the combination of recurrent neural network (RNN) and variational inference (VI), while the spatial information is captured by the graph convolutional network. In order to incorporate external factors, we use feature extractor to au...

متن کامل

Exploratory Method for Spatio-Temporal Feature Extraction and Clustering: An Integrated Multi-Scale Framework

This paper presents an integrated framework for exploratory multi-scale spatio-temporal feature extraction and clustering of spatio-temporal data. The framework combines the multi-scale spatio-temporal decomposition, feature identification, feature enhancing and clustering in a unified process. The original data are firstly reorganized as multi-signal time series, and then decomposed by the mul...

متن کامل

Spatio-temporal patterns of crab fisheries in the main bays of Guangdong Province, China

  Using a semi-balloon otter trawl, crab fisheries in the main bays of Guangdong Province, China, were carried out seasonally . A total of 70 species were found, all belonging to the South China Sea Faunal sub region in the tropical India-West-Pacific Faunal Region. The clustering and nMDS ordination analysis revealed the existence of three groups. Group 1 included Hailing Bay and four bays to ...

متن کامل

A Transfer Learning Based Feature Extractor for Polyphonic Sound Event Detection Using Connectionist Temporal Classification

Sound event detection is the task of detecting the type, onset time, and offset time of sound events in audio streams. The mainstream solution is recurrent neural networks (RNNs), which usually predict the probability of each sound event at every time step. Connectionist temporal classification (CTC) has been applied in order to relax the need for exact annotations of onset and offset times; th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1301.3385  شماره 

صفحات  -

تاریخ انتشار 2013